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1. Introduction

Population increases in large cities have triggered a 
rapid expansion of urban areas along with increases in 
density, and these changes are affecting multiple aspects 
of urban environments (He et al., 2021; Li et al., 2020; 
Wang et al., 2020; Xu et al., 2009). Urban heat islands 
(UHIs) exemplify such environmental changes caused by 
urbanisation (Arshad et al., 2021; Ramírez-Aguilar and 
Souza, 2019). The UHI is a phenomenon wherein the 

temperature in urban areas increases above that of the 
surrounding environment (Morini et al., 2018). This can 
be attributed to the remarkably high proportion of the 
anthropogenic land-cover materials, such as concrete and 
asphalt, used in urban construction. These materials 
demonstrate lower albedo compared to natural green areas 
and absorb increased solar radiations. This results in the 
accumulation of heat energy on the ground surface. 
Moreover, unlike natural areas, these materials afford zero 
water retention and permeation functions, and moisture 
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evaporation from the underlying soil is blocked, and this 
causes the surrounding atmosphere to become dry 
(Carlson, 2007; Erell et al., 2012; Morabito et al., 2021; 
Spronken-Smith et al., 2000). A long-lasting UHI and 
corresponding heat wave can potentially cause an increase 
in the mortality rate. The persistent global warming and 
high-density urban development are exacerbating such 
events. The aforementioned adverse effects of UHIs can 
be mitigated through attainment of spatial solutions. 
Specific diagnosis and mitigation information concerning 
heat islands is required to this end.

Although several studies have investigated UHIs 
from different perspectives and identified their 
underlying causes (Arshad et al., 2021; Bartesaghi-Koc 
et al., 2020; Ramírez-Aguilar and Souza, 2019). The 
results obtained in these studies can be discussed 
differently depending on the method used to acquire the 
temperature data. The temperatures that define heat 
islands can be studied considering the land surface or 
atmosphere, and these two data types possess different 
characteristics (Bartesaghi-Koc et al., 2020). Notably, 
studies concerning the surface urban heat island (SUHI) 
performed using satellite imagery obtained via remote 
sensing are less affected by external conditions and can 
produce uniform measurement values for the intended 
target site without spatial constraints. By exploiting this 
method, a variety of research can be conducted through 
the calculation of spectral indices related to land use, 
such as the Normalised Difference Vegetation Index 
(NDVI), which is useful for indirect measurements of 
the presence and density of plants, and the Normalised 
Difference Built-up Index (NDBI); spatiotemporal 
patterns of land surface temperatures (LSTs) can also 
be studied easily over a wide area (Chen et al., 2014; 
Du et al., 2016; Morabito et al., 2021; Santamouris, 
2014). The method that uses satellite imagery 
represents an indirect assessment of the heat-island 
phenomenon (Gallo et al., 2011), and thus, it is limited 
in that it cannot be used to reconstruct the air 
temperature characteristics actually experienced by 
residents directly.

Research on UHIs based on atmospheric temperatures is 

conducted by measuring the temperature and other 
meteorological variables, such as the wind speed and 
humidity, which influence how humans perceive heat. The 
characteristics of the required data vary depending on 
whether the heat island is a boundary-layer urban heat island 
(BLUHI) or a canopy-layer urban heat island (CLUHI). A 
BLUHI is a heat island that can be explained based on 
meteorological phenomena at the mesoscale or city scale, and 
regional differences such as differences between urban and 
rural areas are typically discussed. Therefore, the method for 
measuring a BLUHI relies on the temperature at which 
sufficient convection has occurred without being affected by 
radiant heat, and these data are measured on high buildings 
or by installing sufficiently high weather towers (Parsaee et 
al., 2019). A CLUHI is a heat island measured by using 
temperatures within the lower parts of a city and represents 
a microclimate affected by surrounding land uses, street 
canyon structures, and so forth. Therefore, the temperatures 
of canyons and all spaces below the rooftop level inside the 
city are measured and used (Parsaee et al., 2019). In other 
words, it requires a measurement network with a higher 
spatial resolution than the measurement network used for a 
BLUHI. Furthermore, there are some notable constraints, 
namely, hour-long measurements need to be acquired, 
non-instantaneous temperatures are required for error filtering 
of the temperatures, and a specific temperature has to be 
measured under the condition that there is no urban element 
(e.g., vehicles and pedestrians) affecting the surroundings 
(Mirzaei and Haghighat, 2010).

Several extant studies have used the temperature- 
monitoring network built by a state and/or local 
governments to investigate BLUHIs; whereas other 
investigations have involved the measurement of 
canopy-layer temperatures (Park et al., 2017; Park et al., 
2019). However, these studies have encountered several 
limitations, including the unavailability of data to 
simultaneously compare different locations owing to 
physical and cost constraints, insufficient measurement 
samples, and lack of monitoring networks that cover the 
entire city (Mirzaei and Haghighat, 2010). Although few 
studies have considered the use interpolation methods to 
overcome these limitations (Bhowmik and Costa, 2015; 



Quantification of urban heat islands using automatic weather station data and smart-city networks

http://www.ekscc.re.kr

201

Jahangir and Moghim, 2019; Liu et al., 2017; Sánchez et 
al., 2003; Shtiliyanova et al., 2017; Yadav and Sharma, 
2018), there remains the limitation in that the results 
obtained do not reflect the actual measurement values for 
the entire city. Instead, they correspond to values obtained 
via statistical estimation. To overcome this problem and 
facilitate the acquisition of high-spatial-resolution urban 
climate data, the state and local governments in several 
countries are considering the development of high-resolution 
air temperature monitoring networks or collaborating with 
private sector companies and/or citizens to develop such 
networks. These data can be used to examine UHIs and can 
be used to perform canopy layer measurements. 

This study aims was to compare the high-resolution 
temperature data (Smart Seoul Data of Things; S-DoT) 
and mesoscale national monitoring network data 
(Automatic Weather Station; AWS) used in conventional 
studies to analyse the difference in the temperature 
characteristics between the two spatial resolutions and 
evaluate the temperature-influencing factors. Furthermore, 
the interpolated temperatures and high-resolution 

temperature data are compared to discuss the canopy and 
boundary layer characteristics.

2. Materials and methods

2.1. Overall study approach

The metropolitan region of Seoul, the capital city of Korea, 
was considered in the analysis performed in this city. The city 
government of Seoul has developed several systems to 
facilitate the collection and analysis of data pertaining to 
urban phenomena across neighbourhoods. Among these, the 
Smart Seoul Data of Things (S-DoT) was deployed under a 
pilot program in 2019, the data obtained as part of which was 
publicly released in April 2020. This study was performed 
over the period between July 1, 2020 and September 30, 
2020, i.e., the summer months. Fig. 1 presents a flowchart of 
the tasks performed in this study. First, the data required for 
analysis were first collected and pre-processed. Next, the 
temperatures obtained using S-DoT and AWS were compared 
via spatial statistical analyses, and their corresponding 

Fig. 1. Flowchart of proposed study
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relationships with the solar radiation (SR), green-area ratio 
(GAR), and altitude were evaluated. Subsequently, the 
interpolation results obtained using AWS and S-DoT were 
comparatively examined. Each variable was selected to reflect 
land use, altitude, and urban structural factors that have been 
discussed as possible causes of temperature differences 
between the two observation networks (Park, 2021). For land 
use, GAR was selected as a variable to figure out differences 
in green space, and SR was used to reflect urban structural 
factors. Altitude has a significant impact on air temperature 
(Choi, 2011; Yim & Lee, 2017), so we used it to reflect 
factors related to differences in altitude within location.

2.2. Data collection and pre-processing

The elevation, climate, land use, and satellite image data 
were collected and pre-processed. Elevation data were used 
to build a digital surface model (DSM), and the daily solar 
radiation (SR), which was corrected based on cloud cover, 
was calculated. The weather data were obtained from the 
S-DoT, a high-resolution temperature-monitoring network of 
Seoul, and the AWS system operated by the government 
was used as a reference temperature-monitoring network. 
Those stations were installed throughout Seoul, and each 
installation location is shown in Fig. 3. The interpolated data 
of the AWS were generated by using the daily temperature 
data of the AWS. Subsequently, the land-cover ratios around 

the weather stations were calculated, and the LSTs were 
calculated by using the Landsat 8 satellite images.

2.2.1. High-resolution air temperature data for Seoul 

(S-DoT)

S-DoT is a group of monitoring sensors that collect 
urban data generated in the city of Seoul. In total, 850 
units have been installed across Seoul (as of 2020. S-DoT 
sensors are mainly installed on closed-circuit TV 
supporting plates, telephone poles, and exterior walls of 
buildings). With the S-DoT, hourly measurement 
information on 10 types of data (air temperature, humidity, 
illuminance, noise level, particulate matter including PM10 
and PM2.5, ultraviolet (UV) rays, vibrations, number of 
visitors, wind direction, and wind speed) is collected. In 
this study, only the data from 8:00 to 20:00 on the 
observation date were used, and S-DoT points were 
excluded when errors were found in the data (Fig. 2).

2.2.2. National temperature data from the Automatic 

Weather System

The AWS is a terrestrial observation system that has 
been in operation since 1997 by the Korea Meteorological 
Administration (KMA). Monitoring stations are installed at 
504 locations nationwide, and these automatically monitor 
the air temperature, wind, precipitation, humidity, and air 

Fig. 2. S-dot data with observational errors removed
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pressure. As of 2020, there were 27 monitoring stations in 
Seoul. If nearby stations were included, there were 33 
monitoring stations with data available. The AWS air 
temperature sensors are installed at a height of 1.2–2.0 m 
above the ground and in places where a ventilation wind 
speed of 2.5–10 m/s is maintained. The AWS constructs 
1-min data by averaging six data points sampled at 10-s 
intervals at the measurement point. The hourly air 
temperature dataset was constructed by averaging 1-min 
data in units of an hour, and the air temperature data were 
recorded in units of 0.1°C (KMA, 2019).

2.2.3. Land cover around the monitoring stations 

(S-DoT and AWS)

A spatial statistical analysis was performed to 
investigate the relationship between the air temperature 
difference and land-use characteristics of the two types 
of monitoring stations (S-DoT and AWS). For the data 

used for land use, land-use maps created by the Ministry 
of Environment were used, and the land-use data were 
divided into seven categories (urban, agriculture, forest, 
grass, wet land, and water). Among the land uses, forest, 
grass, wet land, and water were defined as green areas 
and analysed accordingly. Agricultural land in Seoul was 
excluded from green areas because most of the land 
refers to greenhouses. For land-use characteristics around 
the S-DoT sites, the land-use ratio was calculated by 
using buffer information within a 300 m circle around 
the centre of the S-DoT site (Fig. 4). 

2.2.4. Solar radiation

The SR energy-calculation model developed by Fu and 
Rich (2002), which in turn, is based on the algorithm 
developed by Rich et al.(1994), was used in this study. 
This model derives the SR levels by repeatedly 
calculating the direct and diffused radiation at all 

Fig. 3. Locations of S-DoT and AWS installations in Seoul
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locations on the topographic surface. Elevation 
information is required as input data for the calculation 
of SR energy, but because the digital elevation model 
(DEM) only reflects the elevation of the ground surface, 
the radiation generated by the buildings is not included 
(Wang et al., 2016). Therefore, a digital surface model 
(DSM) was developed and used in this study. The 
Integrated Building Information of Seoul was used to 
build the information needed for this study, and the DSM 
was developed by assuming a height of 3 m from the top 
floor. SR was calculated based on the completed DSM.

The SR for cloudy days was calculated by using the 
SR adjustment formula depending on the cloud cover 
(Kasten and Czeplak, 1980; Nersesian, 2018), and KMA 
data were used for the cloud cover information.

P = 990*(1−0.75*F3.4)                            (1)
where P represents the SR and F represents the cloud 

cover.

2.2.5. AWS interpolation (kriging)

The AWS-based temperature information was created by 
using ordinary kriging among the interpolation methods 
(“AWS kriging” hereinafter) to estimate the information for 
S-DoT points by spatialising the limited temperature 
information of AWS. Interpolation is a method of 
estimating the information for a point where there are no 
observation values, and this is accomplished based on a 
limited number of observations made elsewhere. In fact, 
kriging has been used to investigate the temperature or 
UHI characteristics of points without the need for weather 
stations (Bhowmik and Costa, 2015; Jahangir and Moghim, 
2019; Liu et al., 2017; Sánchez et al., 2003; Shtiliyanova 
et al., 2017; Yadav and Sharma, 2018). Kriging is a 
topographic statistical interpolation method that performs 
predictions by assigning weights to the observation values 
of the surroundings based on a statistical model. It differs 
from inverse distance weighting (IDW), a typically used 
interpolation method, in that the method of applying the 

Fig. 4. Method for determining land-use characteristics around S-DoT sites
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weights is different. In IDW, weights are determined by 
the distance from the observation points, but in kriging, the 
concept of autocorrelation is applied to the correlation 
strength between the observation points when the weights 
are determined (ESRI online).

2.3. Methods

First, the daily mean temperatures were compared 
between the S-DoT and AWS. The statistical difference in 
mean temperatures between the monitoring stations was 
validated using a t-test. We then checked whether there 
was a difference in temperature depending on the spatial 
distribution. The AWS temperature and mean temperature 
of the S-DoT distributed within 300 m of the AWS site 
were statistically compared to check if the spatial 
distributions were different. In addition, we compared the 
temperature differences between the monitoring stations 
located in forests and the city centre.

Next, the correlations between the temperature and three 
factors, namely, the SR, GAR, and altitude were analysed in 
two steps. In the first step, it was assumed that the rainy and 
sunny days would show different correlations, and all of the 

data were grouped into either rainy or sunny days, after 
which their correlations were analysed. In the second step, by 
using daily data from sunny days, we investigated the 
explanatory power of each model derived through a 
multilinear regression analysis of the AWA–S-DoT data. 
Here, the input data of the S-DoT were sorted and broken 
into 150 equal-sized quantiles based on the dependent 
variable for 850 monitoring stations to conduct the analysis 
(Pan et al., 2018).

Finally, the statistical difference between the AWS 
kriging and S-DoT temperatures at the installation 
locations of the S-DoT (n = 850) was analysed to 
determine the difference between the kriging data and the 
city monitoring data. Then, correlations between the 
temperature and the three factors (SR, GAR, and altitude) 
were analysed for each day (sunny days) to analyse which 
factors were correlated with the difference between the two 
datasets. The correlation coefficients were comparatively 
analysed using Fisher’s Z transformation (Fisher, 1921) to 
compare the daily correlations. As depicted in Fig. 5, the 
analysis was performed by generating separate installation 
locations for S-DoT and daily data sets.

Fig. 5. Comparison of correlations between air temperature (AWS kriging, difference between AWS kriging and

S-DoT) and factors of interest (SR, GAR, and altitude)
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3. Results

3.1. Temperature distribution of S-DoT and AWS

In the results of the daily distribution comparison 
between the two datasets from the S-DoT and AWS, 
both monitoring station types showed similar patterns for 
the daily mean temperature at all monitoring stations 
(Fig. 6). The mean temperature obtained using S-DoT 
equalled 26.51°C in summer, whereas that obtained 
using AWS was 23.93°C. Accordingly, the mean S-DoT 
temperature equalled 2.58°C higher compared to its 
AWS counterpart. Furthermore, the standard deviation of 
the S-DoT data was greater than that of the AWS data, 
whereby the mean variation of the S-DoT data (7.3%) 
was higher than that of the AWS data (5.1%). In 
addition, the t-test results for the difference between the 
two monitoring station types showed that a statistically 
significant difference existed between the mean 
temperatures of the S-DoT and AWS. On a day-to-day 
basis, the difference between temperatures measured 
using S-DoT and AWS revealed the S-DoT temperature 
to exceed the corresponding AWS value by 2.54°C on 
average. The corresponding difference in the standard 

deviations equalled 1.02.
In the comparison of the mean temperatures of the 

S-DoT and AWS according to the monitoring point, the 
mean was statistically different between the two datasets 
(t-statistic = -12.489, p-value = 0.000) (Table 1). 
Furthermore, the AWS tended to show lower temperatures 
than the S-DoT within 300 m. The air temperatures 
measured by the AWS located near the forests (n = 19, 
mean = 24.5°C) were generally lower than those of the 
AWS located in the urban areas (n = 12, mean = 25.2°C), 
and the temperature distribution range of the monitoring 
stations was smaller for the AWS than for the S-DoT (Fig. 
7). Specifically, the temperature range of AWS equalled 
23.35–25.36°C (i.e., 2.01°C) while that of S-DoT equalled 
24.01–28.37°C (i.e., 4.36°C).

Fig. 6. Daily S-DoT air temperatures and AWS data

Variable Mean (°C) Std. Dev. T Sig. (2 tail)

S-DoT 26.51 2.86
-6.257 0.000

AWS 23.93 2.72

Temperature gap 2.54 1.02 -

Table 1. Results for the paired sample tests
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3.2. Relationship between SR, land use, altitude, 

and air temperature

3.2.1. Correlation analysis of each factor for all data

In the analysis results for the correlations between 
the air temperature and the three factors (SR, GAR, 
and altitude) within the S-DoT and AWS data, the 
temperature had a positive (+) relationship with the 
SR, whereas the temperature had negative (-) 
relationships with the GAR and altitude, regardless of 
rainfall. In the analysis results for all of the days, the 

AWS showed a positive correlation of 0.364 with the 
SR, while it showed negative correlations of -0.113 
and -0.145 with the GAR and altitude, respectively. 
Meanwhile, for the S-DoT, the correlation coefficients 
were 0.486, -0.090, and -0.079 for the SR, GAR, and 
altitude, respectively. These correlations were different 
between the rainy and sunny days, and the air 
temperature had a stronger correlation with the SR on 
sunny days. The AWS results showed an 
approximately 0.274 higher positive correlation on 
sunny days, and the S-DoT results showed a positive 
correlation of approximately 0.171. The GAR showed 

Fig. 7. Spatial distribution of mean air temperatures (S-DoT versus AWS) 

AWS S-DoT

SR GAR Altitude SR GAR Altitude

Total 0.364 -0.113 -0.147 0.486 -0.090 -0.079

Sunny 0.638 -0.120 -0.130 0.657 -0.096 -0.083

Rainy 0.376 -0.110 -0.147 0.483 -0.086 -0.077

Table 2. Correlation between the air temperature and factors of interest (SR, GAR, altitude) according to the

weather (sunny and rainy conditions)
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a difference of 0.1 for both the AWS and S-DoT, and 
the altitude showed differences of 0.17 and 0.06, 
respectively.

3.2.2. Factor analysis using the regression equation 

for daily data (explanatory power %, weight 

for each variable)

In the results of the multilinear regression analysis 
conducted for sunny days using the daily data in the 
S-DoT and AWS datasets, the S-DoT Model 1 showed 
that the air temperature had a positive relationship with 
the radiation (mean of β = 0.306), and negative 
relationships were found for the GAR (mean of β =
-0.314) and altitude (mean of β = -0.205). The average 
explanatory power was 34.4%, and the ratios of dates 
with a p-value of 0.05 or less were equal to 94.1% for 
the radiation and GAR and 70.6% for the altitude.

In AWS Model 1, the air temperature had a negative 
relationship with all three factors including the radiation 
(mean β = -0.524), GAR (β = -0.351), and altitude (β = 
-0.805). The average explanatory power was 51.9%, and 
the ratios of the dates with a p-value of 0.05 or less were 
73.5% for radiation, 69.6% for GAR, and 97.0% for 
altitude. In AWS Model 2, the air temperature had a 
negative relationship with the GAR (mean of β = -0.225) 
and altitude (mean of β = -0.753). The temperature of the 
AWS was significantly affected by altitude. The average 

explanatory power of the regression model was 70.8%, 
and the ratios of the dates with a p-value of 0.05 or less 
for each variable were 61.8% for the GAR and 100% for 
the altitude.

The observed deviations in the standardised 
coefficients of the multilinear regression analysis by date 
were found to differ across models. In S-DoT Model 1, 
the standard deviation equalled less than 0.1 for SR (std. 
dev. of β = 0.091), GAR (std. dev. of β = 0.092), and 
altitude (std. dev. of β = 0.099). Meanwhile, the AWS 
Model 1 demonstrated the largest deviations with respect 
to SR (std. dev. of β = 0.200), GAR (std. dev. of β = 
0.149), and altitude (std. dev. of β = 0.121) among the 
three models. In AWS Model 2, the standard deviation 
by variable equalled 0.100 for GAR and 0.132 for 
altitude. As shown in Fig. 8, the beta coefficients of 
S-DoT Model 1 and AWS Model 2 were concentrated, 
while those of AWS Model 1 were scattered.

3.3. Comparison between AWS kriging and 

S-DoT data

The data obtained from the AWS by kriging (AWS 
kriging) were compared to the temperature distribution of 
the S-DoT. The mean value of AWS kriging equalled 
24.80°C, which differed the corresponding mean obtained 
using S-DoT by 1.72°C. In other words, AWS kriging 
revealed AWS temperatures to be were generally 

Variable

S-DoT AWS

S-DoT Model 1 AWS Model 1 AWS Model 2

coefficient z-coeff
N

(p < 0.05)
coefficient z-coeff

N
(p < 0.05)

coefficient z-coeff
N

(p < 0.05)

Solar 
radiation

0.0004 0.306
32/34

(94.1%)
-0.002 -0.524

25/34
(73.5%)

- - -

Green-area 
ratio

-0.0157 -0.314
32/34

(94.1%)
-0.009 -0.351

23/34
(69.6%)

-0.009 -0.225
21/34

(61.8%)

Altitude -0.0077 -0.205
24/34

(70.6%)
-1.189 -0.805

33/34
(97.0%)

-0.007 -0.753
34/34

(100%)

Adj. R2 0.344 0.519 0.708

Table 3. Regression analysis results obtained daily data
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compared to their S-DoT counterparts. Furthermore, the 
standard deviation of AWS kriging was 0.20, whereas that 
of the S-DoT was 0.51, which was indicative of a 
narrower distribution. We compared the spatial 
temperature difference between the two monitoring station 
types and confirmed that the temperature difference 
decreased when the monitoring point was near (200 m) 

the forest area (Fig. 9). The mean temperature equalled 
1.43°C for the monitoring points located near the forest 
area; in other regions, this mean temperature equalled 
1.82°C.

By analysing the changes in the AWS interpolation 
(kriging) temperatures of S-DoT points and SR, GAR, as 
well as altitude, this study confirms the absence of a 

(a) S-Dot (point) AWS kriging (raster)
(b) Mean air temperaures difference between obtained using S-DoT 

AWS kriging

Fig. 9. Spatial distributions of mean air temperatures

(a) 3D scatter (b) boxplot

Fig. 8. Distribution of beta coefficients for three models considered in this study
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radiation correlation with the above-mentioned 
parameters. Although the GAR revealed a weak negative 
correlation (-0.155), the same was statistically 
insignificant on 44.1% of the days. The altitude 
demonstrated a strong negative correlation (-0.657), which 
was statistically significant on all days. In contrast, the 
temperature difference between the S-DoT and AWS 
kriging was statistically significant on all days, as 
revealed by the results of the correlation analysis for SR 
(83.7%), GAR (100%), and altitude (98.9%). The mean 
Fisher’s Z value equalled 0.409 for SR, which indicates 
a positive correlation, whereas equalled -0.805 for GAR—

i.e., a negative correlation. The altitude, too, demonstrated 
a negative correlation of -0.619.

4. Discussion

4.1. Quantifying canopy-layer urban heat-island 

drivers

To understand the formation of urban microclimates, 
this study performed an analysis based on the SR, GAR, 
and altitude. When a correlation analysis was performed 
for these three factors, the correlation with the 

temperature of the S-DoT and AWS varied depending on 
the rainfall. A positive correlation was observed for SR, 
and this correlation was particularly strong on sunny days. 
Thus, it appears that the rainfall had a direct impact on 
the temperature in the microclimate; furthermore, the 
microclimate changed as the urban evapotranspiration rate 
changed due to rainfall (Kubilay et al., 2019; Narayanan, 
2017). When a multilinear regression analysis was 
performed for the daily temperature of sunny days, 
excluding the changes caused by rainfall, the results were 
similar to those of the correlation analysis conducted for 
all data in the case of the S-DoT but were different in the 
case of the AWS. Even when the regression analysis was 
performed using daily data, the S-DoT showed a positive 
correlation with the SR, but the AWS showed a negative 
correlation. This difference implies that the radiation 
difference on the boundary layer is not significant at the 
city scale, but the radiation difference on the canopy layer 
is significant. When data were examined in terms of the 
boundary-layer scale, most of the investigated areas 
(excluding the southern and northern slopes of mountains) 
had similar radiation levels, but at the canopy-layer scale, 
the radiation difference caused by the urban structure was 

Data
Weather
condition

Radiation
(mean Fisher’s Z)

Number of
(p > 0.05)

Green
(mean Fisher’s Z)

Number of
(p > 0.05)

Altitude
(mean Fisher’s Z)

Number of
(p > 0.05)

AWS kriging

Total

-0.067
0/92 
(0%)

-0.132
31/92

(33.7%)
-0.648

92/92 
(100%)

Temperature 
difference

(S-DoT 
– AWS kriging)

0.311
77/92 

(83.7%)
-0.786

92/92 
(100%)

-0.606
91/92 

(98.9%)

AWS kriging

Sunny

-0.062
0/34 
(0%)

-0.155
15/34 

(44.1%)
-0.657

34/34 
(100%)

Temperature 
difference

(S-DoT 
– AWS kriging)

0.409
34/34 

(100%)
-0.805

34/34
(100%)

-0.619
34/34 

(100%)

Table 4. Mean Fisher’s Z transformation values for air temperatures obtained via AWS kriging as well as 

temperature difference between S-DoT and AWS kriging and factors of interest SR, GAR, and 

altitude
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reflected because the radiation was calculated to reflect 
the structure. Furthermore, in terms of the method 
involving the installation of monitoring stations, the 
S-DoT possesses a structure that can reflect the radiation 
according to the urban structure, whereas the AWS 
measures the temperature by removing the factors that can 
affect the surrounding temperatures while maintaining the 
ventilation. As a result, it was determined that the AWS 
did not reflect radiation, and the data thereby showed a 
negative correlation in the regression analysis results. It 
was also determined that the explanatory power of the 
model that excluded the radiation from variables (AWS 
Model 2) in the AWS regression model was high because 
this phenomenon was reflected.

The GAR showed a negative correlation with both the 
S-DoT and AWS data. This finding was interpreted as 
follows: the temperature decreased as the GAR increased 
because of the heat-island reduction effect of green areas 
(Jin et al., 2011; Li et al., 2011; Yuan and Bauer, 2007). 
The altitude showed a large difference in its influence, 
which seemed to be due to the difference in the 
installation locations of S-DoT and AWS sites. Unless the 
temperature is measured on mountains or building 
rooftops in urban areas, the altitude difference should not 
be large. Thus, it proved difficult to determine the 
temperature difference caused by the altitude. In contrast, 
there exist several locations where the AWS performs 
temperature monitoring at mountain sites. In such cases, 
spatial datasets are likely to demonstrate a greater impact 
of the altitude compared to S-DoT data within the city 
owing to a large altitude difference between monitoring 
stations.

A noticeable difference in the explanatory power was 
observed when comparing the S-DoT Model 1 and AWS 
Model 2. This difference can be considered a consequence 
of the data not reflecting the temperature increase caused 
by anthropogenic factors. The climate of the canopy layer 
in the city centre is affected by various factors, including 
the building envelopes and anthropogenic factors. 
Furthermore, anthropogenic factors (e.g., outdoor 
air-conditioning units, automobiles) emit substantial 
amounts of thermal energy, which has a direct impact on 

the temperature. This indicates that the S-DoT model 
considered in this study is characterised by a low 
explanatory power owing to inadequate consideration of 
anthropogenic factors. In contrast, the AWS measures the 
temperature in an aggregated state of urban microclimates 
(Armoogum and Bassoo, 2019; Petralli et al., 2014), and 
as a result, the effect of factors considered on the canopy 
layer is small, which led to the difference in the 
explanatory power.

4.2. Air temperature according to BLUHI, CLUHI, 

and SUHI

The measuring method and characteristics of heat 
islands vary depending on the measurement method used 
for air temperature. The BLUHI approach measures the 
heat-island phenomenon while focusing on the city centre 
at a mesoscale. This measurement method characteristically 
assumes the atmosphere in the upper part of the city to 
represent a heat island, and some studies have noted that 
it is desirable to measure the temperature at the top of the 
highest buildings and to install the monitoring devices at 
locations that are not affected by the surrounding buildings 
(Branea et al., 2016). The CLUHI approach focuses on 
heat islands at a more local scale and requires more 
detailed high-resolution data than the BLUHI approach. On 
such a local scale, there is a high possibility of reflecting 
radiation (Nakamura and Mahrt, 2005). Park (2021), who 
compared S-DoT with AWS and ASOS, discussed that the 
difference in temperature between the two stations may be 
due to the height of the station installation. In addition, the 
S-DoT is installed on closed-circuit TV camera mounting 
plates, building exterior walls, and so forth, and as a result, 
it likely reflects the radiation depending on the installation 
location, which may be a result of the influence of 
artificial heat generated in cities such as buildings, 
roads, outdoor air conditioner units, etc (Park, 2021). In 
other words, the AWS is a mesoscale-monitoring 
network that measures a BLUHI and the S-DoT is a 
microscale-monitoring network that measures a CLUHI. 
Therefore, even if the same temperature is observed, 
S-DoT is an urban environment that reflects artificial heat 
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and is measured at a lower height, while AWS is measured 
at a higher location, resulting in different characteristics.

Even if the same heat island is investigated, the results 
will be different depending on which data are used (i.e., 
air temperature or surface temperature data) (Fig. 10, 
which compares results obtained at three data points). 
This confirms that the heat-island hot spots in the 
investigated area appear differently depending on which 
data—AWS kriging (mesoscale), S-DoT (microscale), and 
LST (surface temperature)—are used. The results obtained 
considering the AWS kriging and S-DoT data revealed 
different hot-spot-distribution ranges. The S-DoT showed 
local hot spots, whereas the AWS kriging showed a 
global distribution. The LST results also showed local hot 
spots similar to those of the S-DoT, but the spatial 
distribution was different because the characteristics of 
surface temperature and air temperature are different from 
each other (Branea et al., 2016; Sheng et al., 2017). In 
brief, the type of heat island discussed will differ 
depending on the scale of the spatial solution, and the 
characteristics of the data required would differ as well. 
So, not only are the heat island regions different 
depending on the data used, but the features that need to 
be discussed are also different. Therefore, when 
discussing spatial solutions, it is important to consider the 
data used and the scale.

 When the results of the interpolation at the mesoscale 
(AWS kriging) and the results of the microscale (S-DoT) 

were compared, a temperature difference was found. This 
difference seems to be a result of the aggregation of 
urban microclimates due to the low density of 
temperature-monitoring stations, whereby the heat and 
artificial heat were reflected according to the structure of 
urban buildings in the process of aggregation (Petralli et 
al., 2014). The canopy-layer temperature cannot be 
accurately determined via numerical interpolation owing 
to the difficulty involved in incorporating complex urban 
structures (Asdrubali and Desideri, 2019). In fact, the 
difference between the canopy- and boundary-layer 
temperatures increases with increase in the urbanisation 
ratio around monitoring stations and decrease in GAR. In 
urban areas, the difference between the said temperatures 
increases owing to the heat generated by the buildings 
and roads (Sailor 2013), and it decreases with increase in 
GAR owing to the heat-island reduction effect of green 
areas that reduce anthropogenic heat (Jin et al., 2011; Li 
et al., 2011; Yuan and Bauer, 2007). The radiation 
appears differently depending on the city structure, and 
this difference seems to affect the S-DoT results, wherein 
the microclimate is determined at the street level (Zhu et 
al., 2020). In contrast, as these differences are aggregated 
in AWS kriging, the difference between the S-DoT- and 
AWS-kriging-based temperatures increases as the 
radiation increases. In the case of altitude, because the 
target study areas were at high altitudes, the GAR 
increased and the temperature decreased as the altitude 

Fig. 10. Spatial air-temperature hotspots identified using AWS kriging, S-DoT, and LST
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increased. As a result, the observed temperature difference 
decreases with increase in altitude owing to a reduced 
UHI effect.

To mitigate the UHI phenomenon, targeted spatial 
solutions need to be developed, and to this end, a 
temperature map of urban spaces must be created. In 
developing a reliable climate map and temperature map, 
it is essential to measure the air temperature in short 
intervals. However, because measured temperature data 
are point data, many studies have spatialised such data by 
using interpolation methods (Viggiano et al., 2019, 
Shtiliyanova et al., 2017), as described in this study. In 
the AWS kriging results of this study, it was difficult to 
reflect the temperature difference of the city caused by 
radiation because the interpolation was performed by 
using a small number of point data. While the station 
locations can reflect the effects of SR, their number is too 
small to reflect such effects when interpolated. In 
contrast, the S-DoT results reflect SR, and because the 
S-DoT data are constructed at a relatively higher 
resolution compared to the AWS data, the difference in 
the effect between various urban structures can be 
reflected. Furthermore, the observed variation can be 
investigated in the canopy layer. In other words, the 
S-DoT and AWS data should be used by dividing them 
in consideration of the scale under discussion. 
Additionally, policies and projects aimed at mitigating 
heat islands should evaluate their effectiveness using 
appropriate scales for discussion. For instance, when 
considering green space-based projects for heat island 
mitigation, the success of efforts to reduce urban heat 
islands by incorporating green spaces in cities has been 
measured by analysing temperature at a micro-scale near 
the green areas. However, in order to fully assess the 
effectiveness of heat island mitigation, it is crucial to 
examine data at various scales to comprehend its overall 
usefulness and impact. Monitoring plans or projects 
related to urban heat islands necessitates evaluating their 
effectiveness across multiple scales. This means assessing 
the project's impact not only in the immediate vicinity of 
the implementation area but also at the targeted scale or 
across multiple scales. 

5. Conclusions

This study compared the temperature distributions of 
high-resolution temperature data (S-DoT) and national 
temperature data (AWS) and used these two datasets to 
examine the factors affecting air temperature in Seoul, 
Korea. The S-DoT results showed higher temperatures 
than the AWS results and were affected more by the SR. 
The daily data of the AWS were not affected by the SR, 
and it was difficult to reflect the microclimates in the 
kriging results using AWS data. In contrast, the S-DoT 
results reflected the structural microclimates inside the 
city. Consequently, it was determined that the S-DoT and 
AWS measure the temperature at the canopy layer and 
boundary layer, respectively, and the corresponding 
results will show differences.

These findings indicate that when investigating the UHI 
phenomenon, the S-DoT and AWS data should be used 
carefully by classifying the results in accordance with the 
scale under discussion. Furthermore, with regard to urban 
planning or UHI-related policy framing, the mesoscale 
and microscale data should be used complementary to 
each other, thereby facilitating the implementation of 
potential solutions at multiple scales. In addition, in 
evaluating the effects of potential solutions, it is necessary 
to establish a meteorological observation network that can 
monitor plans that consider multiple scales, rather than 
monitoring only the project site or planning area. In 
conclusion, the UHI effects are simultaneously manifested 
in the boundary and canopy layers. Therefore, multiscale 
analyses and approaches must be developed, and 
monitoring networks need to be established to assess their 
effects.

In this study, we only focused on the altitude 
information of buildings to obtain the structural 
characteristics of the city, but if building envelope 
information such as exterior wall materials and aspect 
ratios of a building are added in the future, it will be 
possible to evaluate how the structural aspects of cities 
affect the UHI phenomenon. Furthermore, if a variety of 
data such as building energy consumption and population 
density are used as anthropogenic indicators within a city, 
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it will be possible to analyse the effects of these factors 
on urban temperatures in the future.

Acknowledgments

This research was supported by Basic Science Research 
Program through the National Research Foundation of 
Korea (NRF) funded by the Ministry of Education 
[2021R1C1C1008775].

References

Armoogum S, Bassoo V. 2019. Privacy of energy 
consumption data of a household in a smart grid. 
Smart Power Distribution Systems. p.163–177. Academic 
Press. doi: 10.1016/B978-0-12-812154-2.00008-0

Arshad M, Khedher KM, Eid EM, Aina YA. 2021. 
Evaluation of the urban heat island over Abha-Khamis 
Mushait tourist resort due to rapid urbanisation in 
Asir, Saudi Arabia. Urban Climate. 36: 100772. doi: 
10.1016/j.uclim.2021.100772

Asdrubali F, Desideri U. 2019. Energy efficiency in 
building renovation. Handbook of Energy Efficiency 
in Buildings. p.675–810. Butterworth-Heinemann. doi: 
10.1016/B978-0-12-812817-6.00042-5

Bartesaghi-Koc C, Osmond P, Peters, A. 2020. 
Quantifying the seasonal cooling capacity of ‘green 
infrastructure types’ (GITs): An approach to assess and 
mitigate surface urban heat island in Sydney, 
Australia. Landscape and Urban Planning. 203: 
103893. doi: 10.1016/j.landurbplan.2020.103893

Bhowmik A, Costa A. 2015. Representativeness impacts 
on accuracy and precision of climate spatial 
interpolation in data-scarce regions. Meteorological 
Applications. 22(3): 368–377. doi: 10.1002/met.1463

Branea AM, Danciu MI, Gaman M, Badescu S. 2016. 
Challanges regarding the study of urban heat islands. 
Ruleset for researchers. Proceedings of the Risk 
Reduction for Resilient Cities. Bucharest. Romania. 3-4

Carlson T. 2007. An overview of the “triangle method” 
for estimating surface evapotranspiration and soil 

moisture from satellite imagery. Sensors. 7(8): 1612–
1629. doi: 10.3390/s7081612

Chen YC, Tan CH, Wei C, Su ZW. 2014. Cooling effect 
of rivers on metropolitan Taipei using remote sensing. 
International Journal of Environmental Research and 
Public Health. 11(2): 1195–1210. doi: 10.3390/ijerph 
110201195

Choi G. 2011. Variability of Temperature Lapse Rate with 
Height and Aspect over Halla Mountain. Journal of 
Climate Research. 6(3): 171-186.

Du H, Song X, Jiang H, Kan Z, Wang Z, Cai Y. 2016. 
Research on the cooling island effects of water body: 
A case study of Shanghai, China. Ecological Indicators. 
67: 31–38. doi: 10.1016/j.ecolind.2016.02.040

Erell E, Pearlmutter D, Williamson T. 2012. Urban 
microclimate: Designing the spaces between buildings. 
Routledge.

Environmental Systems Research Institute (ESRI). How 
kriging works. ESRI online. https://pro.arcgis.com/en/ 
pro-app/latest/tool-reference/3d-analyst/how-kriging-works
.htm

Fisher RA. 1921. On the’probable error’of a coefficient of 
correlation deduced from a small sample. Metron. 1: 1
–32.

Fu P. 2001. A geometric solar radiation model with 
applications in landscape ecology. University of 
Kansas, Lawrence. Kansas. USA.

Fu P, Rich P. 2002. A geometric solar radiation model 
with applications in agriculture and forestry. 
Computers and Electronics in Agriculture. 37: 25–35. 
doi: 10.1016/S0168-1699(02)00115-1

Gallo K, Hale R, Tarpley D, Yu Y. 2011. Evaluation of 
the relationship between air and land surface 
temperature under clear and cloudy sky conditions. 
Journal of Applied Meteorology and Climatology. 
50(3): 767–775. doi: 10.1175/2010JAMC2460.1

He J, Qiu H, Qu F, Hu S, Yang D, Shen Y, Zhang Y, 
Sun H, Cao M. 2021. Prediction of spatiotemporal 
stability and rainfall threshold of shallow landslides 
using the TRIGRS and Scoops3D models. CATENA. 



Quantification of urban heat islands using automatic weather station data and smart-city networks

http://www.ekscc.re.kr

215

197: 104999.
Jahangir MS, Moghim S. 2019. Assessment of the urban 

heat island in the city of Tehran using reliability 
methods. Atmospheric Research. 225: 144–156. doi: 
10.1016/j.atmosres.2019.03.038

Jin MS, Kessomkiat W, Pereira G. 2011. Satellite-observed 
urbanization characters in Shanghai, China: Aerosols, 
urban heat Island effect, and land-atmosphere 
interactions. Remote Sensing. 3(1): 83–99. doi: 10.3390/ 
rs3010083

Kasten F & Czeplak G. 1980. Solar and terrestrial 
radiation dependent on the amount and type of cloud. 
Solar Energy. 24(2): 177–189. doi: 10.1016/0038-092X 
(80)90391-6

Korea Meteological Administration (KMA). 2019. Weather 
Observation Guidelines.

Kubilay A, Derome D, Carmeliet J. 2019. Impact of 
evaporative cooling due to wetting of urban materials 
on local thermal comfort in a street canyon. 
Sustainable Cities and Society. 49: 101574. doi: 
10.1016/j.scs.2019.101574

Li D, Wu S, Liang Z, Li S. 2020. The impacts of 
urbanization and climate change on urban vegetation 
dynamics in China. Urban Forestry & Urban Greening. 
54: 126764. doi: 10.1016/j.ufug.2020.126764

Li J, Song C, Cao L, Zhu F, Meng X, Wu J. 2011. 
Impacts of landscape structure on surface urban heat 
islands: A case study of Shanghai, China. Remote 
Sensing of Environment. 115(12): 3249–3263. doi: 
10.1016/j.rse.2011.07.008

Liu L, Lin Y, Liu J, Wang L, Wang D, Shui T, Chen X, 
Wu Q. 2017. Analysis of local-scale urban heat island 
characteristics using an integrated method of mobile 
measurement and GIS-based spatial interpolation. 
Building and Environment. 117: 191–207. doi: 10.1016/ 
j.buildenv.2017.03.013

Mirzaei PA, Haghighat F. 2010. Approaches to study 
Urban Heat Island – Abilities and limitations. Building 
and Environment. 45(10): 2192–2201. doi: 10.1016/j. 
buildenv.2010.04.001

Morabito M, Crisci A, Guerri G, Messeri A, Congedo L, 
Munafò M. 2021. Surface urban heat islands in Italian 
metropolitan cities: Tree cover and impervious surface 
influences. Science of The Total Environment. 751: 
142334. doi: 10.1016/j.scitotenv.2020.142334

Morini E, Touchaei AG, Rossi F, Cotana F, Akbari H. 
2018. Evaluation of albedo enhancement to mitigate 
impacts of urban heat island in Rome (Italy) using 
WRF meteorological model. Urban Climate. 24: 551–
566. doi: 10.1016/j.uclim.2017.08.001

Nakamura R, Mahrt L. 2005. Air temperature measurement 
errors in naturally ventilated radiation shields. Journal 
of Atmospheric and Oceanic Technology. 22(7): 1046–
1058. doi: 10.1175/JTECH1762.1

Narayanan R. 2017. Chapter Seven - Heat-Driven Cooling 
Technologies. Clean Energy for Sustainable 
Development. p.191–212. Academic Press. doi: 10.1016/ 
B978-0-12-805423-9.00007-7

Nersesian R. 2018. Analyzing Renewables in a utility 
energy mix. Natural Gas & Electricity. 34: 19–24. doi: 
10.1002/gas.22059

Pan H, Deal B, Chen Y, Hewings G. 2018. A Reassessment 
of urban structure and land-use patterns: distance to CBD 
or network-based? — Evidence from Chicago. Regional 
Science and Urban Economics. 70: 215–228. doi: 10.1016/ 
j.regsciurbeco.2018.04.009

Park CY, Lee DK, Asawa T, Murakami A, Kim HG, Lee 
MK, Lee HS. 2019. Influence of urban form on the 
cooling effect of a small urban river. Landscape and 
Urban Planning. 183. 26–35. doi: 10.1016/j.landurbplan. 
2018.10.022

Park HK. 2021. Comparison of temperatures and spatial 
resolutions between urban sensors and national weather 
observations (ASOS, AWS) for urban heat island 
intensity analysis. Journal of the Korean Society of 
Hazard Mitigation. 21(3): 39-48. doi: 10.9798/KOS 
HAM.2021.21.3.39

Park J, Kim JH, Lee DK, Park CY, Jeong SG. 2017. The 
influence of small green space type and structure at 
the street level on urban heat island mitigation. Urban 



Cho, Mingyun ･ Park, Chan ･ Kim, Suryeon ･ Hong, Je-Woo ･ Park, Jinhan

Journal of Climate Change Research 2023, Vol. 14, No. 3

216

Forestry & Urban Greening. 21: 203–212. doi: 10.1016/ 
j.ufug.2016.12.005

Parsaee M, Joybari MM, Mirzaei PA, Haghighat F. 2019. 
Urban heat island, urban climate maps and urban 
development policies and action plans. Environmental 
Technology & Innovation. 14: 100341. doi: 10.1016/ 
j.eti.2019.100341

Petralli M, Massetti L, Brandani G, Orlandini S. 2014. 
Urban planning indicators: Useful tools to measure the 
effect of urbanization and vegetation on summer air 
temperatures. International Journal of Climatology. 
34(4): 1236–1244. doi: 10.1002/joc.3760

Ramírez-Aguilar EA, Lucas Souza LC. 2019. Urban form 
and population density: Influences on urban heat island 
intensities in Bogotá, Colombia. Urban Climate. 29: 
100497. doi: 10.1016/j.uclim.2019.100497

Rich P, Dubayah RC, Hetrick W, Saving S. 1994. Using 
viewshed models to calculate intercepted solar 
radiation: Applications in ecology. American Society 
for Photogrammetry and Remote Sensing Technical 
Papers. In American Society of Photogrammetry and 
Remote Sensing. p.524–529.

Sailor DJ. 2013. Energy buildings and urban environment. 
Climate Vulnerability. p.167–182). Oxford: Academic 
Press. doi: 10.1016/B978-0-12-384703-4.00321-X

Sánchez, MAS, Serrano SMV, Prats JMC. 2003. Spatial 
patterns estimation of urban heat island of Zaragoza 
(Spain) using GIS. Proc. 5th Int. Conf. Urban Climate 
2: 409-412.

Santamouris M. 2014. Cooling the cities – A review of 
reflective and green roof mitigation technologies to 
fight heat island and improve comfort in urban 
environments. Solar Energy. 103: 682–703. doi: 10.1016/ 
j.solener.2012.07.003

Sheng L, Tang X, You H, Gu Q, & Hu H. 2017. 
Comparison of the urban heat island intensity quantified 
by using air temperature and Landsat land surface 
temperature in Hangzhou, China. Ecological Indicators. 
72: 738–746. doi: 10.1016/j.ecolind.2016.09.009

Shtiliyanova A, Bellocchi G, Borras D, Eza U, Martin R, 

Carrère P. 2017. Kriging-based approach to predict 
missing air temperature data. Computers and 
Electronics in Agriculture. 142: 440–449. doi: 10.1016/ 
j.compag.2017.09.033

Spronken-Smith RA, Oke TR, Lowry WP. 2000. 
Advection and the surface energy balance across an 
irrigated urban park. International Journal of 
Climatology: A Journal of the Royal Meteorological 
Society. 20(9): 1033–1047.

Viggiano M, Busetto L, Cimini D, Di Paola F, Geraldi E, 
Ranghetti L, Ricciardelli E, Romano F. 2019. A new 
spatial modeling and interpolation approach for 
high-resolution temperature maps combining reanalysis 
data and ground measurements. Agricultural and Forest 
Meteorology. 276–277: 107590. doi: 10.1016/j.agrformet. 
2019.05.021

Wang M, Chang HC, Merrick JR, Amati M. 2016. 
Assessment of solar radiation reduction from urban 
forests on buildings along highway corridors in 
Sydney. Urban Forestry & Urban Greening. 15: 225–
235. doi: 10.1016/j.ufug.2016.01.003

Wang Z, Zhang S, Peng Y, Wu C, Lv Y, Xiao K, Zhao 
J, Qian G. 2020. Impact of rapid urbanization on the 
threshold effect in the relationship between impervious 
surfaces and water quality in shanghai, China. 
Environmental Pollution. 267: 115569. doi: 10.1016/ 
j.envpol.2020.115569

Xu H, Wen X, Ding F. 2009. Urban Expansion and Heat 
Island Dynamics in the Quanzhou Region, China. 
IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing. 2(2): 74–79. doi: 
10.1109/JSTARS.2009.2023088

Yadav N, Sharma C. 2018. Spatial variations of intra-city 
urban heat island in megacity Delhi. Sustainable Cities 
and Society. 37: 298–306. doi: 10.1016/j.scs.2017.11.026

Yim J, Lee G. 2017. Estimating Urban Temperature by 
Combining Remote Sensing Data and Terrain Based 
Spatial Interpolation Method. Journal of the Korean 
Cartographic Association. 17(2): 75-88.

Yuan F, Bauer ME. 2007. Comparison of impervious 



Quantification of urban heat islands using automatic weather station data and smart-city networks

http://www.ekscc.re.kr

217

surface area and normalized difference vegetation 
index as indicators of surface urban heat island effects 
in Landsat imagery. Remote Sensing of Environment. 
106(3): 375–386.  doi: 10.1016/j.rse.2006.09.003

Zhu R, Wong MS, You L, Santi P, Nichol J, Ho HC, Lu 
L, Ratti C. 2020. The effect of urban morphology on 
the solar capacity of three-dimensional cities. 
Renewable Energy. 153: 1111–1126. doi: 10.1016/ 
j.renene.2020.02.050


